
technical design document

BONNET Tristan

game architecture

SplashScreenMap MainMenuMap MainMap EndBunkerMap

To save variables
among each scene I
use the GameInstance.

The only variable a
need to transfer among
level is the
playerName.

Each scene is linked
with a specific
GameMode, that
manages what will
happen in the scene
itself.

To manage variables
linked to my player I use
the PlayerState.

game mode game instance player state player

character/pawn

I use the PlayerCharacter /
Pawn just to receive input
and other basic stuff.

save game

The save game to stack
the variable locally on
the computer.

In my case, I stack a
specific list of structures
that appear in the
MainMenuMap.

DefaultUEGameMode

DefaultUEPlayerState

DefaultUEPlayerCharacter

GM_MainMenu

DefaultUEPlayerState

P_MainMenu

GM_Survival

BP_PlayerState

BP_MainCharacter

GM_EndBunker

BP_PlayerState

BP_MainCharacter

SG_FrozenBunker

SG_FrozenBunker SG_FrozenBunker

GI_FrozenBunker

setup system

GM_Survival • The setup is made by the main GameMode : GM_Survival, on the MainMap.

player randomization starting location

1. The GameMode gets all the possible locations where the
player can start, those locations where symbolized by a
special blueprint class called : BP_PlayerSpawnLocation.

2. Once the GameMode has the list, the system gets a
random item in this list, a line trace is made from the
item location to the ground. Player is put at the impact
location, for the rotation he takes the one from the item.

3. Next, to put the tent in front of the player : a trace is made
from a point in front of him to the bottom to hit the
ground. The tent location is at the impact point and the
rotation is made by looking at the player.

1 2

2

3

setup system

bunker entrance randomization location

1. The GameMode takes the reference of the bunker
entrance : BP_BunkerEntrance.

2. The GameMode gets all the possible locations
where the entrance can be, those locations where
symbolized by a special blueprint class called :
BP_BunkerLocation.

3. Once the GameMode has the list, the system gets
the distance between playerCharacter and each
bunker location. Next the system selects
randomly one of the three farest bunker locations
gets the location and rotation of the selected
BP_BunkerLocation and set them to the
BP_BunkerEntrance.

1 2

3

3

setup system

bunker code randomization

1. The bunker code is saved in a 4 items list of integer.

2. Each item is set by taking randomly an integer between 0 and 9.

1

2

setup system

bunker code parts - initialization

1. Code parts are actors that show the code to the
player, they are a class of : BP_CodePartSheet.
There are 4 code parts on the map (one for each
code number). At the beginning of the game all the
code parts are got by the GameMode.

2. The first step is the initialization : each
BP_CodePartSheet will receive a number of the
bunker code, the number will be used to update a
widget present in the blueprint.

3. Each code part is not visible in the world at the
beginning of the game, it will be visible later.

1

2 3

setup system

bunker code parts - location randomization

1. Bunker code part locations are obtained from a blueprint
: BP_CodeSheetLocation. This blueprint contains one
integer variable that symbolizes the area where this
blueprint is. All those blueprints are got at the beginning
of the game and put in a list.

2. When the player interacts with a special actor :
BP_Message2 (this interaction means the player found
the bunker entrance) each code part can be relocated.

3. For the relocation, the system will select randomly a
BP_CodeSheetLocation in the list, put a code sheet at
this location, with this rotation and set it visible.

4. Then all the BP_CodeSheetLocation with the same
area index will be removed and the operation is
repeated for each code part.

1

2

3

4

day system

Day system is managed in the GM_Survival.

1. A timer is set when the gameMode is started and the
variable : currentDayTime is incremented.

2. When this value is equal to maxDayTime, the game is
over.

3. But the player can interact with the tent when this
value is equal to or higher than minTimeToValidDay.

4. When the player interacts with the tent, all player
statistics are reset and all the inventory is cleared.

5. Then the currentDayTime value is set to 0 and the days
value (symbolized by an int) is incremented.

1

23

4

5 5

player statistics

Player statistics are in the BP_PlayerState.

1. There are the health, the hunger, the thirst and the
cold.

2. Health is symbolized by an int value, when it reaches
0, the game is over.

3. Hunger and thirst are symbolized by float values that
decrease with time, when one of those values
reaches 0 the game is over.

4. The cold is symbolized by a float value that
increases with the time, when this value reaches
timeToDieFromCold (set to 180 sec) the game is
over.

1

2

3

4

inventory system

inventory class

• All inventory items derive from a parent class : BaseClassInventoryObject, this class has some variables.

fullHandedObject : specific object that takes all the place in hand of player (in my case fullHandedObject
is the fire camp), when this object is in hand the other object in hand is automatically disabled.

inHandTransform : the transform item will have when it is snapped to the player.

startingScale : the scale object has at the beginning of the game, when the item is dropped by the player
it will recover this scale.

Other variables are here for the user interface.

Those functions are used when the item is set as the current object and the other when is removed.

Those functions are used to use an item when it is set as currentHandedObject.

These functions are called in the playerCharacter.

inventory system

inventory setup

Inventory is an array of BaseClassInventoryObject stack in the BP_PlayerState.

1. At the beginning of the game, the mandatory objects (axe, bucket and
detector) are automatically added to this array.

2. Then they are attached to the player and use the inHandTransform to
set their transform when they are attached.

3. Inventory items are added in this order :
1. Axe index : 0
2. Bucked index : 1
3. Detector index : 2

4. At the beginning of the game : the axe is set as the
currentHandedObject.

1

2

3

4

inventory system

move in inventory

1. To move in inventory, a variable inventoryItemIndex (int)is used.

2. The function to modify the index is called in the BP_MainCharacter, by
using wheel up/down.

3. In function of the input received, the index is modified.

4. Then the last handed object is disabled (visibility is set to false).

5. In the inventory array, the item at the new index value is taken and set
as the currentHandedObject.

1

2

3

4 5

inventory system

full handed object - wood camp

1. When a currentFullHandedObject is trying to be set the
system checks if there is no currentFullHandedObject, if
not the variable is set with the object created.

2. The currentHandedObject is hidden.

3. When the currentFullHandedObject is finished to use (in
the case of the wood camp just putted on the ground), the
fullCurrentHandedObject variable is set to null and the
currentHandedObject is set visible.

1

2

3

wolves

spawning system

The game mode manages wolves spawn.

1. A timer is set, and each time, the event to spawn one wolf
is called.

2. During this event, the system will select randomly an
actor in the list of BP_WolfSpawnerLocation, and spawn
the wolf a this location, the wolf is added to a list.

3. Then the actor is removed from the list and when all
actors are removed the array is refilled with all
BP_WolfSpawner location actors.

1

2

3

wolves

wolf behavior

Wolf behavior is managed by a behavior tree

1. A wolf has two main states : patrol and alerted.

2. When the wolf is in patrol state it will take a random point
in a radius around him, move to this location, wait a time
and redo this action.

3. When the player runs, he makes noise, the location of
the noise is the new target location in their patrol.

1

2

3

wolves

wolf behavior - alerted

1. When the wolf sees the player it switches to alerted
state.

2. In this state if the wolf has player in sight it will move to
him.

3. When it is in front a player, an animMontage is played and
the function Attack Player is called.

4. If the player leaves the sight of the wolf, the system
checks if the player is in the wolf area (symbolised by a
sphere component) if yes the wolf is still in the alerted
state. If player is not in the area the wolf will return in
patrol state.

1

2

3

4

wolves

wolf death

1. A wolf takes damage the axe overlaps him during his
used.

2. An axe shot removes 1 healthPoint to the wolf.

3. When wolf has 0 health point the wolf is dead.

4. A piece of meat spawns.

5. An event is called to the game mode to remove the wolf
from the list.

6. The wolf actor is destroyed.

1 2

3 4

5 6

fire camp

creation

1. A variable wood is stacked in the BP_PlayerState, this
variable cannot be higher than 20.

2. When the variable is equal to or higher than 5, the player
can create a fire camp.

3. He needs to maintain the « A » key for a certain time.

4. Then the fire camp actor spawns and his automatically
set has the currentFullHandedObject in the
BP_PlayerState.

1

2

3

4

fire camp

use

1. When fire camp is in player hand, it can be put on
the ground with left click.

2. When the fire camp is on the ground a timer is set to
decrement the lifetime value.

3. When the value is equal to 0, the fire camp is
disabled.

4. During the fire camp lifetime, if the player stays in
the area (symbolized by a sphere component) his
cold value decreases.

1

2

3

4

fire camp

cook

1. When fire camp is put on the ground, the player can
put a piece of meat or the bucket on the camp.

2. When one of those objects is put on the fire camp
the slot is not available.

3. The object can be removed from the fire camp at any
time, then the slot is available again.

4. When the object is on the fire camp, an internal
timer starts to cook the object.

5. When the object is cooked, it will stay on the fire
camp and the player needs to interact with to
remove it from the fire camp.

1 2

3

4

5

end game statistics

behavior

1. At the end of the game (fail or success),
informations of it are stack in a structure :
S_PlayerEndGame.

2. This structure is saved in an array contained in
the SaveGame : SG_FrozenBunker.

3. When the MainMenuMap is open, the system
gets the array and creates one widget for each
structure to show the history of the games.

1

2

3

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21

